13 research outputs found

    A Review on Mechanics and Mechanical Properties of 2D Materials - Graphene and Beyond

    Full text link
    Since the first successful synthesis of graphene just over a decade ago, a variety of two-dimensional (2D) materials (e.g., transition metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered. Among the many unique and attractive properties of 2D materials, mechanical properties play important roles in manufacturing, integration and performance for their potential applications. Mechanics is indispensable in the study of mechanical properties, both experimentally and theoretically. The coupling between the mechanical and other physical properties (thermal, electronic, optical) is also of great interest in exploring novel applications, where mechanics has to be combined with condensed matter physics to establish a scalable theoretical framework. Moreover, mechanical interactions between 2D materials and various substrate materials are essential for integrated device applications of 2D materials, for which the mechanics of interfaces (adhesion and friction) has to be developed for the 2D materials. Here we review recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials. While graphene is the most studied 2D material to date, we expect continual growth of interest in the mechanics of other 2D materials beyond graphene

    Method and device for quantitative control of force in mechanochemical reactions

    No full text
    A mechanochemical reactor includes an outer shell. A first plate is slidably disposed within the tubular outer shell at a first end of the tubular outer shell and a second plate is slidably disposed within the tubular outer shell at a second end of the tubular outer shell, the second end being opposite the first end. A linearly-reciprocating mill is disposed within the tubular outer shell between the first plate and the second plate. A first electromagnet is operatively coupled to the first plate so as to establish a position and a holding force of the first plate within the tubular outer shell, and a second electromagnet is operatively coupled to the second plate so as to establish a position and a holding force of the second plate within the tubular outer shell.U

    Driving Surface Chemistry at the Nanometer Scale Using Localized Heat and Stress

    No full text
    Driving and measuring chemical reactions at the nanoscale is crucial for developing safer, more efficient, and environment-friendly reactors and for surface engineering. Quantitative understanding of surface chemical reactions in real operating environments is challenging due to resolution and environmental limitations of existing techniques. Here we report an atomic force microscope technique that can measure reaction kinetics driven at the nanoscale by multiphysical stimuli in an ambient environment. We demonstrate the technique by measuring local reduction of graphene oxide as a function of both temperature and force at the sliding contact. Kinetic parameters measured with this technique reveal alternative reaction pathways of graphene oxide reduction previously unexplored with bulk processing techniques. This technique can be extended to understand and precisely tailor the nanoscale surface chemistry of any two-dimensional material in response to a wide range of external, multiphysical stimuli

    Controlling Nanoscale Friction through the Competition between Capillary Adsorption and Thermally Activated Sliding

    No full text
    We demonstrate measurement and control of nanoscale single-asperity friction by using cantilever probes featuring an <i>in situ</i> solid-state heater in contact with silicon oxide substrates. The heater temperature was varied between 25 and 790 °C. By using a low thermal conductivity sample, silicon oxide, we are able to vary tip temperatures over a broad range from 25 ± 2 to 255 ± 25 °C. In ambient atmosphere with ∼30% relative humidity, the control of friction forces was achieved through the formation of a capillary bridge whose characteristics exhibit a strong dependence on temperature and sliding speed. The capillary condensation is observed to be a thermally activated process, such that heating in ambient air caused friction to increase due to the capillary bridge nucleating and growing. Above tip temperatures of ∼100 ± 10 °C, friction decreased drastically, which we attribute to controllably evaporating water from the contact at the nanoscale. In contrast, in a dry nitrogen atmosphere, friction was not affected appreciably by temperature changes. In the presence of a capillary, friction decreases at higher sliding speeds due to disruption of the capillary; otherwise, friction increases in accordance with the predictions of a thermally assisted sliding model. In ambient atmospheres, the rate of increase of friction with sliding speed at room temperature is sufficiently strong that the friction force changes from being smaller than the response at 76 ± 8 °C to being larger. Thus, an appropriate change in temperature can cause friction to increase at one sliding speed, while it decreases at another speed

    Nanometer-Scale Infrared Spectroscopy of Heterogeneous Polymer Nanostructures Fabricated by Tip-Based Nanofabrication

    No full text
    There is a significant need for chemical identification and chemical imaging of nanofabricated structures and devices, especially for multiple materials integrated at the nanometer scale. Here we present nanofabrication, chemical identification, and nanometer-scale chemical imaging of polymer nanostructures with better than 100 nm spatial resolution. Polymer nanostructures of polyethylene, polystyrene, and poly(3-dodecylthiophene-2,5-diyl) were fabricated by tip-based nanofabrication. Nanometer-scale infrared measurements using atomic force microscopy infrared spectroscopy (AFM-IR) obtained quantitative chemical spectra of these nanostructures. We show chemical imaging of intersecting patterns of nanometer-scale polymer lines of different chemical compositions. The results indicate that for closely packed heterogeneous nanostructures, the spatial resolution of AFM-IR is not limited by nanometer-scale thermal diffusion, but is instead limited by the cantilever sensitivity and the signal-to-noise ratio of the AFM-IR system
    corecore